§1.1 Field Theory
The path integral representation

$$
\begin{aligned}
& \text { path integral representation } \\
& Z:=\langle 0| e^{-i H T}|0\rangle=\int D q(t) e^{i} \int_{0}^{T} d t\left[\frac{1}{2} m q^{2}-V(q)\right]
\end{aligned}
$$

for the quantum mechanics of a single particle, can be generalized to the case of N particles:

$$
H=\sum_{a} \frac{1}{2 m_{a}} \hat{p}_{a}^{2}+V\left(\hat{q}_{1}, \hat{q}_{2}, \ldots, \hat{q}_{N}\right)
$$

positions of particles,

$$
a=1,2, \ldots, N
$$

Going through the same steps as before, we get

$$
Z=\langle 0| e^{-i H T}|0\rangle=\int D q(t) e^{i s(q)}
$$

where

$$
S(q)=\int_{0}^{T} d t\left(\sum_{a} \frac{1}{2} m_{a} \dot{q}_{a}^{2}-V\left(q_{1}, q_{2}, \ldots, q_{N}\right)\right)
$$

includes interaction energy $v\left(q_{a}-q_{b}\right)$ as well as external potential w(q_{a})

We can expand

$$
V\left(q_{1}, q_{2}, \cdots, q_{N}\right)=\sum_{a, b} \frac{1}{2} k_{a b} q_{a} q_{b}+\cdots
$$

Taking the continuum limit, the label a on the particles can be replaced by n-dimensional position vector $\vec{x} \rightarrow q_{a}(f) \rightarrow q(t, \vec{x})$
Traditional notation: $q(f, \vec{x}) \longrightarrow \varphi(t, \vec{x})$ "field"
kinetic energy

$$
\sum_{a} \frac{1}{2} m_{a} \dot{q}_{a}^{2} \longrightarrow \int d^{n} \times \frac{1}{2} \sigma(\partial \varphi / \partial t)^{2}
$$

where $\sum_{a} \rightarrow \frac{1}{e^{n}} \int d^{n} x, \quad \sigma:=\frac{m_{a}}{e^{n}}$
characteristic
length scale take mo's equal
Focusing on $V=\sum_{a, b} \frac{1}{2} k_{a b} q_{a} q_{b}+\cdots$, and using $2 q_{a} q_{b}=\left(q_{a}-q_{b}\right)^{2}-q_{a}^{2}-q_{b}^{2}$, we get for nearest-neighbor interactions,

$$
\begin{gathered}
\left(q_{a}-q_{b}\right)^{2} \sim l^{2}(\vec{\nabla} \varphi)^{2} \\
\rightarrow \quad S(\varphi):=\int_{0}^{T} d t \int d^{n} \times \mathscr{L}(\varphi) \\
=\int_{0}^{T} d t \int d^{n} \times \frac{1}{2}\left(\sigma\left(\frac{\partial \varphi}{\partial t}\right)^{2}-\rho\left[\left(\frac{\partial \varphi}{\partial x_{1}}\right)^{2}+\cdots\left(\frac{\partial \varphi}{\partial x_{n}}\right)^{2}\right]\right. \\
\left.-\tau \varphi^{2}-2 \varphi^{4}+\cdots\right)
\end{gathered}
$$

where parameters $\rho, \tau_{1} \ldots$ are determined by $k_{a b}, l, \ldots$
This already looks almost like a Lorentz invariant action!
\rightarrow In QFT we impose Lorentz invariance and no more than two time derivatives
\rightarrow set $\rho=\sigma c^{2}, \quad \varphi \longmapsto \frac{\varphi}{\sqrt{\sigma}}$
\rightarrow obtain Kinetic term

$$
(\partial \varphi / \partial t)^{2}-c^{2}\left[(\partial \varphi / \partial x)^{2}+(\partial \varphi / \partial y)^{2}\right]^{2}
$$

Setting $C=1$ and $D=n+1$, we end up with a Loventz-inu action:

$$
S=\int d^{D} x\left[\frac{1}{2}(\partial \varphi)^{2}-\frac{1}{2} m^{2} \varphi^{2}-\frac{g}{3!} \varphi^{3}-\frac{\lambda}{4!} \varphi_{+\cdots}^{4}\right]
$$

Notation: $(\partial \varphi)^{2}:=\partial_{\mu} \varphi \partial^{\mu} \varphi$
Note: Higher spacial derivatives are naturally excluded due to Lorentz -invariance!
Insisting on further symmetries, like $\quad \varphi \mapsto-\varphi$, has implications on $V(\varphi)$ (e.g. only even polynomials)
Classical limit:
Restoring h gives

$$
Z=\int_{t \rightarrow 0}^{\text {gives }} \mathbb{D} \varphi e^{\left(i / \hbar_{1}\right) \int d^{D} \times \mathscr{L}(\varphi)}
$$

In the limit $t_{1} \rightarrow 0$, one obtains according to Euler-Lagrange variation:

$$
\partial_{\mu} \frac{\partial \mathscr{L}}{\mathcal{F}\left(\partial_{\mu} \varphi\right)}-\frac{\partial \mathscr{L}}{\partial \varphi}=0
$$

\$1.2 The operator formalism and the vacuum

Review of Heisenberg's approach to QM:
Consider $\quad \mathscr{L}=\frac{1}{2} \dot{q}^{2}-V(q)$
single particle Lagrangian
\rightarrow define canonical momentum

$$
\begin{aligned}
& p:=\frac{\delta \mathscr{Z}}{\delta \dot{q}}=\dot{q} \\
\rightarrow H & =p \dot{q}-\mathscr{L}=\frac{p^{2}}{2}+V(q)
\end{aligned}
$$

p and q become operators by imposing

$$
[\hat{p}, \hat{q}]=-i(*) \quad(\text { setting } 5=1)
$$

time evolution:

$$
\begin{aligned}
\therefore \frac{d p}{d t} & =i[H, p]=-V^{\prime}(q) \\
\therefore \frac{d q}{d t} & =i[H, q]=p
\end{aligned}
$$

\rightarrow operators evolve according to

$$
O(t)=e^{i H t} O(0) e^{-i H t}
$$

Defining operator

$$
a:=\frac{1}{\sqrt{2 \omega}}(\omega q+i p)
$$

with some parameter w, we get

$$
\xrightarrow{(*)}\left[\begin{array}{ll}
a, & a^{+}
\end{array}\right]=1
$$

$a(f)$ evolves according to

$$
\begin{aligned}
\frac{d a}{d t} & =i\left[H, \frac{1}{\sqrt{2 \omega}}(\omega q+i p)\right] \\
& =-i \sqrt{\frac{\omega}{2}}\left(i p+\frac{1}{\omega} v^{\prime}(q)\right)
\end{aligned}
$$

\rightarrow ground state is defined as

$$
a|0\rangle=0
$$

For the harmonic oscillator we get

$$
\begin{aligned}
& L=\frac{1}{2} \dot{q}^{2}-\frac{1}{2} \omega^{2} q^{2} \rightarrow V^{\prime}(q)=\omega^{2} q \\
& \rightarrow \frac{d a}{d t}=-i \omega a
\end{aligned}
$$

Generalization to field theory:

$$
\mathcal{L}=\int d^{D-1} \times\left[\frac{1}{2}\left(\dot{\varphi}^{2}-(\vec{\nabla} \varphi)^{2}-m^{2} \varphi^{2}\right)-u(\varphi)\right]
$$

anharmonic term
\rightarrow canonical momentum density:

$$
\pi(\vec{x}, t)=\frac{\delta \mathscr{L}}{\delta \dot{\varphi}(\vec{x}, t)}=\partial_{0} \varphi(\vec{x}, t)
$$

canonical commutation relations at equal time:

$$
\begin{aligned}
{\left[\pi(\vec{x}, f), \varphi\left(\vec{x}^{\prime}, t\right)\right] } & =\left[\partial_{0} \varphi(\vec{x}, t), \varphi\left(\vec{x}^{\prime}, t\right)\right] \\
& =-i \delta^{(D-1)}\left(\vec{x}-\vec{x}^{\prime}\right)
\end{aligned}
$$

and $\left[\pi(\bar{x}, t), \pi\left(\bar{x}_{1}, t\right)\right]=0$,

$$
\left[\varphi\left(\vec{x}^{\prime}, t\right), \varphi\left(\vec{x}^{\prime}, t\right)\right]=0
$$

\rightarrow Hamiltonian is given by
Legendre transformation:

$$
\begin{aligned}
H & =\int d^{D-1} \times\left[\pi(\vec{x}, t) \partial_{0} \varphi(\vec{x}, f)-\mathscr{L}^{2}\right] \\
& =\int d^{D-1} \times\left[\frac{1}{2}\left(\pi^{2}+(\vec{\nabla} \varphi)^{2}+m^{2} \varphi^{2}\right)+u(\varphi)\right]
\end{aligned}
$$

For the case of the harmonic oscillator $(u=0)$, the field equation is:

$$
\begin{equation*}
\left(\partial^{2}+m^{2}\right) \varphi=0 \tag{*}
\end{equation*}
$$

Define operators $a(\vec{k}), a^{+}(\bar{k})$, with

$$
\left[a(\vec{k}), a^{+}(\vec{k})\right]=\delta^{(0-1)}\left(\vec{k}-\vec{k}^{\prime}\right) \quad(x *)
$$

\rightarrow solution to $(*)$:

$$
\varphi(\bar{x}, f)=\int \frac{d^{D-1} k}{\sqrt{(2 \overline{4})^{-1} 2 \omega_{k}}}\left[a(\vec{k}) e^{-i\left(\omega_{k} t-\vec{k} \cdot \vec{x}\right)}+a^{+}(\vec{k}) e^{i\left(\omega_{k} t-\vec{k} \cdot \vec{x}\right)}\right]
$$

with $\omega_{\vec{k}}=+\sqrt{\vec{k}^{2}+m^{2}}$

$$
\rightarrow \quad\left[\partial_{0} \varphi(\vec{x}, t), \varphi\left(\vec{x}^{\prime}, t\right)=-i \delta^{(D-1)}\left(\vec{x}^{\prime}-\vec{x}^{\prime}\right)\right.
$$

automatically satisfied!
Now we are ready to defining the vacuum!
\rightarrow It is the ground state of QFT:

$$
a(\stackrel{\rightharpoonup}{k})|0\rangle=0 \quad \forall \quad \stackrel{\rightharpoonup}{k}
$$

Energy of vacuum:
we want to compute the expectation value:

$$
\begin{aligned}
E_{0} & :=\langle 0| H|0\rangle \\
& =\frac{1}{2} \int d^{D-1} \times\langle 0| \pi^{2}+(\vec{\nabla} \varphi)^{2}+m^{2} \varphi^{2}|0\rangle
\end{aligned}
$$

Focusing on the last term, we have

$$
\begin{aligned}
\langle 0| \varphi(\vec{x}, t) \varphi(\vec{x}, t)|0\rangle & =\langle 0| \varphi(\overrightarrow{0}, 0) \varphi(\overrightarrow{0}, 0)|0\rangle \\
\begin{array}{l}
\text { translation } \\
\text { invariance }
\end{array} & =\lim _{\vec{x}, t \rightarrow \overline{0}, 0}\langle 0| \varphi(\vec{x}, t) \varphi(\overrightarrow{0}, 0)|0\rangle
\end{aligned}
$$

\rightarrow thus we need to compute the two-point correlator

$$
\langle 0| \varphi(\vec{x}, t) \varphi(\overrightarrow{0}, 0)|0\rangle \text { for } t>0
$$

Of the four terms $a^{+} a^{+}, a^{+} a, ~ a a^{\dagger}$, and aa in the above product, an by the a at survives
\rightarrow using commutator (x, x), we get

$$
\begin{aligned}
& \langle 0| \varphi(\vec{x}, t) \varphi(\overrightarrow{0}, 0)|0\rangle \\
= & \int \frac{d^{D-1} k}{(2 \pi)^{D-1} 2 \omega_{k}} e^{-i\left(\omega_{k} t-\vec{k} \cdot \vec{x}\right)}
\end{aligned}
$$

More generally, defining the time-ordered product,

$$
T[\varphi(x) \varphi(y)]=\theta\left(x^{0}-y^{0}\right) \varphi(x) \varphi(y)+\theta\left(y^{0}-x^{0}\right) \varphi(y) \varphi(x)
$$

we get

$$
\begin{aligned}
& \langle 0| T[\varphi(\vec{x}, t) \varphi(\overrightarrow{0}, 0)]|0\rangle \\
& =\int \frac{d^{D-1} k}{(\alpha \pi)^{D-1} 2 \omega_{k}}\left[\theta(t) e^{-i\left(\omega_{k} t-\vec{k} \cdot \vec{x}\right)}+\theta(-t) e^{+i\left(\omega_{k} t-\vec{k} \cdot \vec{x}\right)}\right]
\end{aligned}
$$

Putting everything together, we compute

$$
\begin{aligned}
\langle 0| H|0\rangle & =\frac{1}{2} \int d^{D-1} x\langle 0|\left(\partial_{t} \varphi\right)^{2}+(\vec{\nabla} \varphi)^{2}+m^{2} \varphi^{2}|0\rangle \\
& =v 0 l_{D-1} \int \frac{d^{D-1} k}{(2 \pi)^{D-1} 2 \omega_{k}}\left[\frac{1}{2}\left(\omega_{k}^{2}+\vec{k}^{2}+m^{2}\right)\right]
\end{aligned}
$$

volume
of space

$$
=v_{0} l_{D-1} \int \frac{d^{D-1} k}{(2 \pi)^{D-1}} \frac{1}{2} \hbar \omega_{k}
$$

where in the last line we restored the dependence an 5
\rightarrow redefine Hamiltonian to

$$
H-\langle 0| H|0\rangle
$$

such that the vacuum energy is zero!

